Catalogue geared motors Edition 08/2011

Selection of geared motors

RFQ data 🗆		Order 🗆		Bauer GmbH
Order / RFQ no.:			_	Fax: +49 (0)711 3518 381
Contact data:			_	Email: info@danfoss-bauer.de
Application:				
	(e.g. traction drive,	hoist/lift drive, roll	er convey	or, feedscrew, etc.)
	Gearbox type	jo jo	100	0
	BG	□ BF □	BK 🗆	BS 🗆
Number of items				
Efficiency class	not IE 🗆	E2 🗆 E3 🗆		
Power		kW		
Output shaft speed	ls	1/min		
Torque	. /	Nm		Service facto f _B =
Mounting arranger	ment/			Terminal hox position
RAL 7031 or	special RAL shade			
Corrosion prevention	on Standard or	CORO1 / CORO2 /	CORO3	
Rated voltage	V	type of l	ousiness	
Thermistors	□ Thermos	⊓∠ tats □		
	Ambient temperat	ure	°C	Installation elevation [m]
	Ambient condition	is & installation site		
	Iransmission comp Radial force on out	oonent (direct, chai	n, gearwh N at a dist	eel, belt, etc.)
	Axial force on outp	out shaft	N	
Operation with inv	erte			
speeds of 1	/min to 1	I/min Cutoff fre	equency	Hz
Integrated frequen	cy converter 🗌	Cabinet-	mounted	frequency converter 🗆
Gear unit design		□ Foot with cleara	ance holes	;
		□ A-Flange with c	learance h	noles $D = $ mm
		\Box C-Flange with ta	appes hol ng arms w	es /ith rubber buffers in L/T/B direction
		□ Foot with tappe	ed holes o	n L/R/LR/T/B side
Arbeitswelle		□ Solid shaft on F	/B/FB end	
		□ Hollow shaft		
		□ Hollow shaft for	r shrink-or	n disk
Motor-mounted co	omponents	□ brake		
		Type		Braking torque = Nm
		manual release	ves 🗆 🗸	no 🗆
		Microswitch	yes 🗆	no 🗆
		incremental		
		absolute		
		Pulse count		
		Output signal		
		Forced ventilati	on	
		□ Output shaft rev	verse rota	tion block (clockwise / anti-clockwise)
Special design feat	ures			
2				

Drive configuration	Motions are necessary in production plants and equipment for the manufacture of goods and products. Geared motors are used to implement these motions in stationary produc- tion equipment. The objective of drive configuration is to obtain the optimal motor for each type of motion.
	Motions in machines and equipment vary considerably. Experienced design engineers reduce the necessary motions to a few standard types:
	 continuous linear motion reciprocating linear motion horizontal linear motion vertical or oblique linear motion for lifting and lowering loads continuous rotary motion and reciprocating rotary motion
	All motions can be divided into:
	 an acceleration phase a constant-velocity phase a braking (deceleration) phase
	These motion phases must be examined separately when dimensioning a drive, in order to determine the phase with the highest load. After the maximum load has been determined, the drive system can be selected. See our separate "Design Guide" publication for assistance with various use cases.

In addition to the data on page 35 (Specification of geared motors), the following data is necessary for drive configuration:

Designation	Description	Unit
Z	Cycle rate	[1/h]
td	Operating time per day	[h]
ta	Deceleration time	[s]
n ₂	Output speed	[rpm]
n	Rated rotor shaft speed	[rpm]
J	Moment of inertia	[kgm ²]
J _{ext}	External moment of inertia	[kgm ²]
J _{ext}	External moment of inertia	[kgm ²]
	referred to the rotor shaft	
J _{rot}	Rotor moment of inertia	[kgm²]
F	Force	[N]
m	Mass	[kg]
v	Velocity	[m/s]
а	Acceleration	[m/s ²]
g	Earth gravitational constant	[m/s ²]
P _{dyn}	Dynamic power	[kW]
Ps	Static power	[kW]
Р	Power	[kW]
M ₂	Output torque	[Nm]
Mzerf	Required drive torque	[Nm]
MN	Rated torque at rotor shaft	[Nm]
Ma	Deceleration torque	[Nm]
M∟	Braking or driving load torque	[Nm]
Mgr	Specific limiting torque of gearbox at gear ratio i	[Nm]
MBr	Rated braking torque	[Nm]
i	Gear reduction ratio	
FI	Inertia ratio	

Required data for drive configuration

Drive configuration

	Drive configuration process
	Motor configuration
Determining the motor power	The required power can generally be calculated as follows:
	$P = \frac{F \times v}{\eta}$
	As previously described, all motions are divided into an acceleration phase (dynamic power), a constant-velocity phase (static power), and a braking (deceleration) phase. Depending on the type of motion, the force F necessary to overcome all opposing forces such as rolling friction, linear friction, gravitational force, acceleration and so on arising from the drive train has a strong influence on the required power and must be determined explicitly for each use case.
	See Section 15 for assistance in selecting the right motor power.
Determining the required torque	After the motor power has been determined, the required gearbox output torque can be calculated with:
	$M_2 = \frac{P \times 9550}{n_2}$
Determining the gear reduction ratio	The gear reduction ratio is the ratio of the rated speed of the motor (see the motor data in Section 15) to the desired output speed of the geared motor.
	$i = \frac{n}{n_2}$
	Gearbox size selection
Determining the inertia ratio	The inertia ratio is the ratio of the sum of the moments of inertia of all masses driven by the motor and converted to the motor speed, including the moment of inertia of the motor rotor, to the moment of inertia of the rotor:

$$FI = \frac{J_{ext} + J_{rot}}{J_{rot}} \qquad \text{where} \qquad J_{ext'} = \frac{J_{ext}}{i^2}$$

34 www.bauergears.com

Gear Motor Selection Drive configuration

Determining the shock load

Determining the minimum service factor f_{Bmin}

Brake specification

The shock load (see Sections 6, 7, 8 and 9) is determined from the inertia factor, the type of transmission component and the relative moment of acceleration.

Based on the operating time per day, the cycle rate and the ascertained shock load, the service factor f_{Bmin} can be taken from the tables in Sections 6, 7, 8 and 9.

Based on this minimum service factor f_{Bmin} , select a geared motor from the tables that has a higher service factor as well as the required output speed, output torque and motor power.

Note: The service factor relates solely to the required torque for static operation needed by the application, which should be covered by the output torque of the selected geared motor. The dynamic portion is not taken into consideration here.

The actual service factor of the geared motor with regard to required torque for static operation can therefore be calculated as follows:

$$f_{_B} = -\frac{M_{_{gr}}}{M_{_{2erf}}}$$

The final step is to specify the accessory options for the geared motor.

Essentially it is necessary to determine, based on the amount of friction energy to be dissipated by the brake, whether the brake is a holding brake or a service brake. See Section 16 for the definitions of holding brakes and service brakes.

Once all the necessary data and requirements are known, the required braking torque can be calculated as follows:

$$M_{br} = M_{a} \pm M_{L}$$
$$M_{a} = \frac{J \times n}{9,55 \times t_{a}}$$

If the specific application data is not known, for horizontally driven equipment we recommend selecting a braking torque that is 1.0 to 1.5 times the rated torque of the motor.

In the case of applications with significant external moments of inertia (FI greater than 2) and with [?] operating cycles per hour, the brake size must always be selected on the basis of the thermally allowable braking energy. See Section 16 for detailed information on brake configuration.

In the case of lifting equipment, for safety reasons a braking torque twice as large as the rated torque of the motor should always be selected.

Motor configuration

Torque-speed characteristic

The torque versus speed curve shows the operating characteristics of the asynchronous motor. The reference points shown schematically on the torque versus speed curve are significant criteria for motor selection.

Torque vs. Speed Curve

The **starting torque M**^A with the rotor stationary, which is also called the locked-rotor torque, determines the acceleration of the equipment or system. If the motor is powered directly from the mains, bear in mind that the starting torque, usually listed in the motor data tables in the form of the ratio M_A/M_N , is a fixed and unalterable quantity. This means that the desired acceleration can only be approximated when the motor is operated directly from the mains. Operation from a frequency converter is discussed separately.

The **pull-up torque M**_s is the least amount of torque developed by the motor while it is coming up to speed. It must always be greater than the effective load torque at the time when the pull-up torque occurs, as otherwise it will not be possible to accelerate the drive.

The **breakdown torque M**_K is the maximum torque the motor is capable of producing. If the load increases above the rated torque M_n, the slip s increases, the speed n decreases, and the motor delivers more torque. This can rise to a maximum level M_K. After this point the motor stalls, which means that it suddenly stops running at this slip value (breakdown slip). If the breakdown torque is exceeded, either the load must be removed or the motor must be switched off immediately. Otherwise the motor will be destroyed as a result of overheating.

The **rated torque M_N** is the torque available in continuous operation at the rated power P_N and rated speed n_N .

Dynamic power

The dynamic power is the power that accelerates the entire system, which consists of the load, transmission components, gearbox and motor.

$$\mathsf{P}_{\mathsf{dyn}} = \frac{\mathsf{m} \times \mathsf{a} \times \mathsf{v}}{\mathsf{\eta}}$$

- P_{dyn} Dynamic power [W]
- m Mass [kg]
- a Acceleration [m/s²]
- v Velocity [m/s]
- ŋ Efficiency

Static power

The static power includes all forces present under zero-acceleration conditions. This includes rolling friction, linear friction, lifting force (with lifting) and wind force, among others.

$$P_s = \frac{F_F \times v}{\eta}$$

- Ps Static power [W]
- F_F Travel resistance [N]

Total power P_G

 $P_{G} = P_{dyn} + P_{S}$ $P_{G} = \frac{m \times a \times v}{\eta} + \frac{F_{F} \times v}{\eta}$

Horizontal motion, rotary motion and vertical motion upwardsStart-up time [s]
$$t_A = \frac{\left[J_M + \frac{J_{ext}}{\eta}\right] \times n_M}{9,55 \times \left[M_A - \frac{M_L}{\eta}\right]}$$
Cycle rate [c/h] $Z = Z_0 \times \frac{1 - \left[\frac{M_L}{M_A \times \eta}\right]}{\left[\frac{J_S + \frac{J_{ext}}{\eta} + J_M}{J_M}\right]} \times K_L$ Vertical motion downwards $L_A = \frac{\left[J_M + \frac{J_{ext}}{\eta}\right] \times n_M}{9,55 \times \left[M_A - (M_L \times \eta)\right]}$ Start-up time [s] $t_A = \frac{\left[J_M + \frac{J_{ext}}{\eta}\right] \times n_M}{9,55 \times \left[M_A - (M_L \times \eta)\right]} \times K_L$ Cycle rate [c/h] $Z = Z_0 \times \frac{1 - \left[\frac{M_L \times \eta}{M_A}\right] \times K_L}{\left[\frac{J_S + J_M + (J_{ext} \times \eta)}{J_M}\right]} \times K_L$

37

Motor configuration

Motor selection

Example:

Required dynamic torque at motor (for acceleration):	126 Nm
Required static torque at motor	70.0 Nm
Total torque at motor:	196 Nm

IE2													
P _N [kW]	Туре	n _∾ [rpm]	M _N [Nm]	I _N 400 V [A]	cos φ	n (100% load) [%]	1) (75% load) [%]	1) (50% load) [%]	Ia/In	Ma/Mn	Ms/Mn	Mĸ/Mn	J _{rot} [kgm²]
7,5	DHE13LA4	1460	49	15,1	0,81	88,9	89,2	87,9	7,0	3,3	3,0	3,5	0,0345
9,5	DHE16MA4	1470	62	19,7	0,78	89,4	89,4	86,5	6,8	2,9	2,5	3,2	0,057
11	DHE16LA4	1470	71	22,5	0,78	90,3	90,0	88,3	7,9	3,5	2,9	3,8	0,076
15	DHE16XA4	1470	97	31	0,77	90,6	90,8	88,8	7,2	3,2	2,8	3,5	0,087
18,5	DHE18LA4	1470	120	35	0,83	91,5	91,7	90,0	7,9	3,6	3,0	3,3	0,160

IE1													
P _N [kW]	Туре	n⊾ [rpm]	M _N [Nm]	I∾ 400 V [A]	cos φ	n (100% load) [%]	1) (75% load) [%]	1) (50% load) [%]	Ia/In	Ma/Mn	Ms/Mn	Mĸ/Mn	J _{rot} [kgm²]
7,5	DSE13MA4	1440	50	15,3	0,81	87,5	87,8	87,1	6,2	2,8	2,5	3,2	0,02900
9,5	DSE13LA4	1440	63	19,2	0,82	87,1	87,5	87,5	6,0	2,9	2,6	3,0	0,03450
11	DSE16MA4	1460	72	22,6	0,81	87,7	88,0	87,3	6,0	2,5	2,1	2,7	0,05700
15	DSE16LA4	1460	98	29,5	0,83	88,9	89,2	88,9	6,1	2,5	2,1	2,8	0,07600
18,5	DSE16XA4	1460	121	37,5	0,81	89,3	89,9	88,5	6,1	2,6	2,2	2,8	0,08700

Due to the significantly higher starting torque (M_A) of IE2 motors (M_A/M_N 3.5) compared to IE1 motors (M_A/M_N 2.5), an 11 kW with an IE2 (DHE16LA4) motor can be used in this case. Otherwise the 15 kW IE1 (DSE16LA) should be selected.

Selected motor: 11.0 kW IE2: DHE16LA4

No-load cycle rate Z₀

If the cycle rate is greater than normal (typically around 60 cycles per hour), the additional thermal load and, depending on the type of power transmission, the additional mechanical load must be taken into account in motor selection.

The no-load cycle rate Z_0 is the number of start cycles per hour with the motor running under no load (no external moments of inertia) in which the allowable winding temperature for the insulating material class F is reached.

No-load cycle rate Z₀:

P _N	Туре	Zo
[kW]		[c/h]
0,37	DHE08MA4	27000
0,55	DHE08LA4	19000
0,75	DHE08XA4	15000
1,1	DHE09LA4	11000
1,5	DHE09XA4	8700
2,2	DHE09XA4C	6400
3	DHE11MA4	5000
4	DHE11LA4	4000
5,5	DHE11LA4C	3100
7,5	DHE13LA4	2400
9,5	DHE16MA4	2000
11	DHE16LA4	1800
15	DHE16XA4	1400
18,5	DHE18LA4	1200
22	DHE18XA4	1000
30	DHENF20LG4	790
37	DHENF22SG4	670
45	DHENF22MG4	570
55	DHENF25MG4	490
75	DHENF28MG4	380

As a result of external loads, the no-load cycle rate is reduced to the allowable service cycle rate. The effect of the load is expressed by the inertia ratio FI and the load factor K_L .

Load factor K

The load factor reflects the relative load *P/PN* and the duty cycle of the motor in operation between the cycles.

The relative load has a quadratic effect on the allowable cycle rate. The effect of the duty cycle depends on the circumstances. With little or no load, the stress on the motor decreases due to the relatively long cooling periods, while at rated load or heavy loading the stress on the motor increases due to load losses.

The load factor K^L for 4-pole motors is determined as follows:

$$K_{L100} = 1 - \left(\frac{P}{P_n}\right)^{1,5}$$

 $K_{L} = 0.35 + (K_{L100} - 0.25) \times ED$

Gear Motor Selection Radial and axial forces on the output shaft

Radial and axial forces on the output shaft

For each geared motor with a solid shaft, the allowable radial force $F_{R(N,V)}$ referred to the centre of the output shaft, x = l/2, is listed in the selection tables. The listed data applies to both foot-mounted and flange-mounted versions. If the force application point F_x is off centre, the allowable radial force must be recalculated taking into account the bearing lifetime and the shaft strength.

Maximum allowable radial force at force application point X

- $F_{R(N,V)}$ Allowable radial force (x = I/2) according to the selection tables [N]
- X Distance from shaft junction to the force application point [mm]
- F_A Axial force [N]

To evaluate the radial force present at the force application point X, the allowable radial forces at position X must be determined with respect to the load limits of the bearings and the shaft strength.

If the calculated allowable radial forces at the force application point X are greater than the radial force that is present, the gearbox may be selected for the application. If the calculated values are not sufficient or the force application point X is not within the stub shaft length l, please consult us.

Bearing load limit

$$F_{XL1} = F_{q} \times \frac{0,5+b}{\left(\frac{X}{1}+b\right)}$$
$$F_{XL2} = F_{q} \times \frac{0,5+a}{\left(\frac{X}{1}+a\right)}$$

Shaft strength

$$F_{XW1} = F_{qmax} \times \frac{0.5}{\left(\frac{X}{I}\right)}$$
$$F_{XW2} = F_{qmax} \times \frac{0.5 + c}{\left(\frac{X}{I} + c\right)}$$

For the selected gear ratio and bearing type (normal or reinforced), F_q is the allowable perpendicular force F_{RN} or F_{RV} from the geared motor selection tables.

 F_{qmax} is the maximum allowable perpendicular force for the selected gearbox size as listed in the geared motor selection tables, independent of the bearing type (normal or reinforced).

The factors a, b and c for the individual gearbox types are listed in the following tables.

Frame size	Bearings	Output shaft code	I	а	b	c
BG04	Normal	1	24	0,5625	1,5	-
BG05	Normal	1	28	0,5893	1,3929	-
BG06	Normal	1	30	0,6667	1,4167	-
PC10	Normal	1	10	0,7125	1,6750	-
DGIU	Normai	7	40	1,1000	2,0625	-
BC 20	Newsel	1		0,6100	2,2500	-
BGZU	Normal	7	50	0,9400	2,5800	-
DC20	Newsel	1	60	0,5917	2,1750	-
BG30	Normal	7	00	0,9417	2,5250	-
DC 40	Normal	1	60	0,6917	2,3667	-
BG40		7	60	1,0083	2,6833	-
PC FO	Newsel	1	80	0,5625	2,0000	-
0020	Normai	7	80	0,8563	2,2938	-
PC60	Normal	1	100	0,5300	2,0200	-
BGOO	Normai	7	100	0,7650	2,2550	-
PC70	Normal	1	120	0,4750	1,7292	-
DG10	Normal	7	120	0,7292	1,9833	-
DC00	Newsel	1	140	0,4286	1,7000	-
DGOU	Normal	7	140	0,6000	1,8714	-
DC00	Newsel	1	200	0,3675	1,5300	-
RGAO	Normal	7	200	0,5825	1,7450	-
BC100	Newsel	1	220	0,3477	1,4341	-
DGTUU	Normai	7	220	0,5386	1,625	-

Spur gear unit BG series

Gear Motor Selection Radial and axial forces on the output shaft

Shaft-mounted gear unit BF series

Frame size	Bearings	Output shaft code	I	а	b	c
BF06	Normal	1	50	0,4500	1,4100	-
DE10	Nerroel	1	60	0,5083	1,4833	-
BEIU	Normai	2	60	0,6500	1,6250	-
REDO	Normal	1	70	0,4286	1,3571	-
DF2U	Normai	2	70	0,5571	1,4857	-
DEDO		1		0,3875	1,2563	-
BF30	Normal	2	80	0,5688	1,4375	-
DE 40	Nerroel	1	100	0,4050	1,2250	-
BF40	Normai	2	100	0,5250	1,3450	-
DECO	Nerman	1	120	0,3125	1,0625	-
BF20	Normai	2	120	0,3959	1,1458	-
	Normal	1		0,3286	1,0821	-
PEGO	Normai	2	140	0,4036	1,1571	-
DFOU	Painforcad	1	140	-	-	0,2750
	Reinforceu	2		-	-	0,3643
	Normal	1		0,2722	1,0566	-
	Normai	2	100	0,3056	1,0889	-
BF10	Poinforcod	1	180	-	-	0,2194
	Remorced	2	1	-	-	0,2639
	Normal	1	220	0,2878	1,3536	-
DEOO	inormai	2		0,2873	1,3518	-
BFOU	Deinforced	1		-	-	0,2364
	Reiniorcea	2		-	-	0,2268

Bevel gear unit BK series

Frame size	Bearings	Output shaft code	I	а	b	c
		1		0,4375	1,9875	-
DVAC		2		0,4375	1,9875	-
BK06	Normal	7	40	0,9125	2,4625	-
		8		0.9125	2,4625	-
		1		0,5917	2,2417	-
BK10	Normal	2	60	0,5917	2,2417	-
	Newsel	1		0,5071	2,2357	-
DK20	Normai	2	70	0,5071	2,2357	-
BK20		1	/0	-	-	0,3929
	Reinforced	2		-	-	0.3929
		1		0,5250	2,2750	-
	Normal	2		0,5250	2,2750	-
BK30		1	80	-	-	0,4125
	Reinforced	2		a b 0,4375 1,9875 0,4375 1,9875 0,9125 2,4625 0,9125 2,4625 0,9125 2,4625 0,9125 2,4625 0,9125 2,4625 0,9125 2,4625 0,5917 2,2417 0,5917 2,2357 0,5071 2,2357 0,5071 2,2357 0,5071 2,2357 0,5050 2,2750 0,5250 2,2750 0,5250 2,2750 0,5250 2,1700 0,4300 2,1700 0,4300 2,1700 0,4300 2,1700 0,4300 2,1700 0,4300 2,1700 0,4300 2,1700 0,4303 1,417 20 - 0,4083 1,417 20 - 0,3536 1,8036 0,3536 1,8036 0,3536 1,6694 <td>0,4125</td>	0,4125	
		1		0,4300	2,1700	-
	Normal	2		0,4300	2,1700	-
BK40	Reinforced	1	100	-	-	0,3400
		2		-	-	0,3400
	Normal	1		0,4083	1,9417	-
DICEO		2	120	0,4083	1,417	-
BK20		1	120	-	-	0,3250
	Reinforced	2		-	-	0,3250
	Newsel	1		0,3536	1,8036	-
DKCO	Normai	2	140	0,3536	1,0836	-
BKOU	Deinfernerd	1	140	-	-	0,3121
	Reinforced	2		-	-	0,2979
	Newsel	1		0,2861	1,6694	-
DKZO	Normal	2	100	0,2861	1,6694	-
BK/0	Deinfensed	1	180	-	-	0,2428
	Reinforced	2		-	-	0,2317
	Newsel	1		0,2818	1,5545	-
DKOO	Normal	2		0,2818	1,5545	-
DKAU	Deinferrerd	1	220	-	-	0,2305
	Reinforced	2		-	-	0,2214
	Newsel	1		0,2519	1,6096	-
DKOO	Normal	2		0,2519	1,6096	-
BK90	Deinferrerd	1		-	-	0,1989
BK20 BK30 BK40 BK50 BK60 BK70 BK80 BK90	Reinforced	2		-	-	0,1912

Gear Motor Selection Radial and axial forces on the output shaft

Worm gear unit BS series

Frame size	Bearings	Output shaft code	I	a	b	c
		1		0,6	2,1	-
BCOD	Nerreel	2	20	-	-	-
8502	Normai	7	30	1,3333	2,8333	-
		8		-	-	-
		1		0,4375	1,9875	-
0000		2		-	-	-
B203	Normal	7	40	0,9125	2,4625	-
		8	1	-	-	-
	Normal	1	10	0,5375	1,7875	-
8504		2	40	-	-	-
DEOC		1	50	0,4800	1,9400	-
8200	Normai	2	50	-	-	-
PC10	Normal	1	60	0,5917	2,3083	-
0310	Normai	2	00	-	-	-
DC 20	Nerreel	1	70	0,5500	2,4357	-
B520	Normai	2	70	-	-	-
0000	Nerrow	1	0.0	0,5312	2,4313	-
R230	Normai	2	80	-	-	-
DC 40	Newsel	1	120	0,4292	1,7042	-
D34U	Normai	2	120	-	-	-

Transmission components

If a transmission component is used (gearwheels, chainwheels, V-belt, etc.), the resulting radial forces can be determined as follows.

$$F_{R} = \frac{2000 \times M}{D_{T}} \times f_{Z} \leq F_{R(N, V)}$$

F_R Radial force [N]

M Torque [Nm]

DT Pitch radius of the transmission component [mm]

fz Safety factor

A safety factor f_z depending on the type of transmission component attached to the output shaft must be included when determining the value of the radial force FR that is present.

Factor fz for the type of transmission component

Transmission component	Safety factor fz	Note
Gearwheel	1	=> 17 teeth
Gearwheel	1,15	< 17 teeth
Chainwheel	1	=> 17 teeth
Chainwheel	1,25	< 17 teeth
Toothed rack	1,15	< 17 teeth (pinion)
V-belt	22,5	From tensioning force
Flat belt	23	From tensioning force
Friction wheel	34	

Axial force

The following specification applies to the allowable axial force FA on the output shaft (either tension or compression) for all Bauer geared motors and for foot, flange or hollow-shaft versions:

$$F_A = 0.5 \times F_{R(N,V)}$$

Please consult us in case of larger axial forces.

Dimensioning based on efficiency

Drive configuration based on efficiencyWith the introduction of the II tive, utilisation of the potential increased urgency and made In the industrial applications a energy (approximately 70%). fans, pumps, grinders, rolling appliances, and office machine Due to this broad range of ap ergy saving policies. As electric small improvements in efficie In many cases, especially in tract the speed of a three-phase sq gearboxes or by using external savings, the efficiency of the gearboxes of the gearboxe	With the introduction of the IEC 60034-30 standard and the ErP 2009/125/EC EU directive, utilisation of the potential energy savings in industrial environments has been given increased urgency and made legally mandatory. In the industrial applications area, electric motors consume the vast majority of electrical energy (approximately 70%). They are used in all areas and in many applications, such as fans, pumps, grinders, rolling mills, lifts, transport and conveying equipment, household appliances, and office machines. Due to this broad range of applications, electrical drive systems are a primary target for energy saving policies. As electric motors consume a large amount of electrical energy, even small improvements in efficiency lead to significant savings. In many cases, especially in transport and conveying equipment, it is necessary to reduce the speed of a three-phase squirrel-cage motor. This can be done by using external tractior gearboxes or by using external or integrated reduction gearboxes. With regard to energy savings, the efficiency of the gear unit and transmission components must not be ignored. The overall efficiency of a system is calculated as follows: $\eta_{System} = \eta_{Motor} \times \eta_{Getriebe} \times \eta_{Anlage}$								
Savings potentialIn accordance with the MotorMotor: ηtive 2009/125/EC specifies IE2operating in continuous runn	or Regu 2 (High ning du	lation 16 n Efficiend uty (S1), e	640/2009 cy) as the ffective 1	9/EC, the l minimur 6 June 20	legally bin m efficien 011.	nding EU cy for nev	ErP direc- w motors		
The right motor frame size an and economical aspects base	nd mot ed on t	or type s he new n	hould be notor reg	selected ulations f	based or for the IE2	n environi 2 series.	mental		
Environmental analysis Motor capacity utilisation is a tors.	a partic	cularly im	portant f	actor in t	he energ	y utilisatio	on of mo-		
Unlike what is often incorrect ply replacing a motor operati at 100% of its capacity. Partial higher efficiency.	tly assu ting at o ally load	umed, en only 50% ded moto	ergy cons of its cap ors dissipa	sumption bacity wit ate less h	n cannot l h a smalle eat and t	be reduce er motor herefore a	ed by sim- operating achieve		
The following table shows the and aluminium rotors and a 1	ne com 1.1-kW	parative t motor w	echnical ith an alu	data of 2 Iminium :	.2-kW mc squirrel-c	otors with age rotor	copper		

_				N		Ŋ	ŋ	ŋ					
	Туре	n _N [rom]		400 V	cos φ	(100% load)	(75% load)	(50% load)	Ia/In	Ma/Mn	Ms/Mn	Μκ/ΜΝ	J _{rot}
[[[]]]		[[piii]		[A]		[%]	[%]	[%]					[kgiii]
1.1	DHE09LA4	1440	7.3	2.5	0.75	82.7	82.3	79.8	5.9	2.9	2.7	3.4	0.0032
2.2	DHE09XA4C	1440	14.5	4.75	0.79	84.5	85.0	83.5	5.2	1.8	1.7	2.7	0.0053
2.2	DHE11SA4	1440	14.5	4.6	0.80	86.2	86.0	84.7	7.0	3.1	2.8	3.6	0.0081

Even with 50% capacity utilisation, the two 2.2-kW motors have higher efficiency than the fully utilised (100% load) 1.1-kW motor.

Thanks to the large thermal margins of IE2 motors, there is no need for additional safety margins in design parameters.

However, with very high cycle rates the higher starting torque of IE2

motors, and the associated higher gear acceleration loads, should be taken into account. See separate publication EP34 for additional information.

Calculation of the efficiency under partial load

The motor data sheets list motor efficiency figures according to Motor Regulation 640/2009/EC for operation at several load levels (50%, 75% and 100%). The efficiency at any partial load point can be calculated approximately from the efficiency figures for 75% and 100% load, and the energy balance of the application can be evaluated

$$R_{vL} = \frac{\left[\frac{100}{\eta_{100}} - 1\right] - 0.75 \times \left[\frac{100}{\eta_{75}} - 1\right]}{0.4375}$$
$$R_{vO} = \left[\frac{100}{\eta_{100}} - 1\right] - R_{vL}$$

$$\eta_{P} = \frac{100}{\left[1 + \frac{R_{VO}}{p}\right] + R_{VL} \times p}$$

with

accordingly.

Ŋ 100	Efficiency at 100% load
Ŋ 75	Efficiency at 75% load
RVL, RVO	Intermediate results
р	Partial load (value range: 0 to 1 or overload)
Ŋ ₽	Efficiency at partial load point p

Economic analysis

As described above, the economic analysis does not permit especially large safety factors. The energy savings required by the ErP Directive 2009/125/EC can be achieved very easily with electric motors, but there is a price attached.

With the change from IE1 to IE2 efficiency class (effective 16 June 2011) for mains-powered motors operating in S1 duty, users of electric motors are faced with power-dependent additional costs when purchasing these products.

The drive should essentially be selected based on the investment payback time as a function of the period under consideration.

Operating a 2.2-kW motor constantly at 50% load (as described above) does not make sense from an economic perspective. In this case, an additional amount must be paid for changing to a different frame size or package length and for material expenditures with IE2 motors. As a result, the investment payback time of the motor will extend longer into the lifetime of the system.

4

Dimensioning based on efficiency

Consequently, the most cost-effective motor selection must be based on the following factors.

- Duty type Evaluate the application, since most applications do not operate with S1 duty type.
- Operating time The longer the operating time, the shorter the payback time.
- Motor capacity utilisation Motor utilisation 75% or higher load.
- Additional financial expenditure Safety factors increase the economic overhead.
- Payback time

Comparison of the general savings potential of gearboxes and motors in continuous running duty (S1) shows that the energy savings potential of gearboxes is significantly higher than that of motors. The efficiency of gearboxes is predominantly dependent on the tooth geometry and the friction values of the bearings and seals. At high input speeds and with vertical designs in which the first stage rotates fully immersed in oil, splash losses cannot be neglected. Vertical designs should generally be avoided.

The efficiency of worm gear drives is highly speed dependent (see illustration). Bauer worm gear units are available as two-stage worm gear units for frame sizes BS04 and larger. This enables very high reduction ratios and significantly higher efficiency than with pure worm gear units. A loss of 2% per stage can be assumed for two-stage worm gear units.

Comparison of typical efficiency (ŋ) versus reduction ratio (i) for helical spur gear units (H) with two, three or four stages and two-stage worm gear units (S), relative to the rated power of the gear unit.

Gear efficiency ngear

System efficiency η_{system}

The drive system provides the highest savings potential in the analysis of the overall efficiency.. Designers and plant engineers should always strive to optimise the transmission components.

Transmission compo- nent	Conditions	Efficiency
Wire rope	Per full turn on the wire drum (with journal or roller bearings)	0.91–0.95
V-belt	Per full turn on the belt pulley (with normal belt tension)	0.88–0.93
Synthetic belts	For each full turn or roll, with roller bearings (normal belt tension)	0.81–0.85
Rubber belts	For each full turn or roll, with roller bearings (normal belt tension)	0.81–0.85
Toothed belts	For each full turn or roll, with roller bearings (normal belt tension)	0.90–0.96
Chains	For each full turn or chainwheel, with roller bearings (depending on chain size)	0.90–0.96
Spindles	Trapezoid-thread spindle	0.30 – 0.70
	Ballscrew spindle	0.70 – 0.95
Gear unit	With spur gears or bevel gears: 2% per stage, with worm gears and other types of toothing, according to manufacturer's data	0.94–0.98

Shock loads of machinery

Shock loads for various types of machinery are listed in standards and guidelines as well as industry-specific documents and manufacturer's documents. If for example a crusher or a press is listed here with an shock load class of III, this is justified. On the other hand, under favourable conditions a belt conveyor could have an shock load class of I, but this could quickly change to III with on/off operation, high speed and overdrive due to a loose chain. Consequently, the classifications in the following table should by no means be taken blindly. They provide a rough point of reference, but the ultimate classification of the shock load should always take into account the factors specified by Bauer, in particular the inertia ratio, the cycle rate and the transmission component(s).

Drive	Shock load			Drive	S	hock loa	nd
Construction machinery				Rubber			
Construction lifts		II		Extruders	L		- 111
Concrete mixers		П		Calenders	L	П	
Road construction machinery		II		Kneaders	L		
				Mixers	L	П	
Chemical industry				Rolling mills	1		111
Cooling drums		II					
Mixers		II		Timber processing and	1		
Stirrers (light media)	I			woodworking	ļ		
Stirrers (viscous media)		II		Debarking drums			III
Drying drums		II		Planers	L	II	
Centrifuges (light)	I			Woodworking machinery	Ι		
Centrifuges (heavy)		II		Saw frames	L		III
Transport and conveying		Ż		Crane systems			
systems				Luffing mechanisms	I		
Hauling winches		II		Traversing mechanisms			
Conveying machines			III	Hoisting mechanisms	Ι		
Apron conveyors		II		Slewing mechanisms		II	
Belt conveyors (bulk material)	I			Jib mechanisms		II	
Belt conveyors (piece goods)		II					
Bucket belt conveyors		II		Plastics	1		
Chain conveyors		II		Extruders		II	
Circular conveyors		II		Calenders		11	
Freight lifts		II		Mixers		11	
Flour bucket conveyors	I			Grinders and pulverisers		II	
Passenger lifts		II					
Flat belts		II		Metalworking	1		
Screw conveyors		II		Plate bending machines		II	
Gravel bucket conveyors		II		Plate straightening machines			III
Inclined lifts			III	Hammers			111
Steel belt conveyors		II		Planers			
Chain conveyors		II		Presses			
				Shears	 I	II	
Blowers and fans				Forging presses			
Roots blowers		II		Punches			
Blowers (axial and radial)	I			Countershafts and driveshafts	Ι		
Cooling tower fans		II		Machine tools (principal)		II	
Suction blowers		II		Machine tools (ancillary)	Ι		

Gear Motor Selection Shock loads of machinery

Drive	Shock loa	ad		Drive	Shock	load	
Food processing				Rolling mills			
Filling machines	1			Plate shears			
Kneading machines				Plate turners		11	
Mashing machines				Billet presses			1
Packaging machines	1			Billet and slab lines			1
Sugar cane cutters				Billet conveyors			1
Sugar cane mills				Wire drawing machines		II	
Sugar beet cutters				Descaling machines			1
Sugar beet washers				Sheet metal mills			1
				Plate mills			1
Paper				Winders (strip and wire)		II	
Couching			111	Cold rolling mills			1
Smoothing rolls			111	Chain transports		II	
Hollander				Billet shears			1
Pulp grinder			111	Cooling beds		11	
Calender				Cross transports		II	
Wet presses			III	Roller tables (light)		II	
Shredders			111	Roller tables (heavy)			1
Suction presses			111	Roll straighteners		II	
Suction rolls			111	Tube welders			1
Drying rolls			111	Trimming shears		II	
				Cropping shears			ļ
Stone and soil				Continuous casting machines			1
Crushers			111	Roll adjustment devices		II	
Rotary kilns				Manipulators			1
Hammer mills							
Tube mills			111	Laundry			
Beating mills				Drum dryers		II	
Tile and block presses				Washing machines		II	
Fabrics				Water treatment			
Winders				Centrifugal aerators		II	
Printing and dying machines				Archimedes screw		II	
Tanning vats							
Shredders				1			
Looms				1			

Catalogue geared motors